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On head-on collisions between two solitary waves 

By C .  H. S U  AND RIDA M. MIRIE 
Division of Applied Mathematics, Brown University, Providence, R.I. 02912 

(Received 21 May 1979 and in revised form 25 September 1979) 

We consider a head-on collision between two solitary waves on the surface of an 
inviscid homogeneous fluid. A perturbation method which in principle can generate 
an asymptotic series of all orders, is used to calculate the effects of the collision. We 
find that the waves emerging from (i.e. long after) the collision preserve their original 
identities to the third order of accuracy we have calculated. However a collision does 
leave imprints on the colliding waves with phase shifts and shedding of secondary 
waves. Each secondary wave group trails behind its primary, a solitary wave. The 
amplitude of the wave group diminishes in time because of dispersion. We have also 
calculated the maximum run-up amplitude of two colliding waves. The result checks 
with existing experiments. 

1. Introduction 
We recmt, in $2 ,  the equations of motion of an inviscid, constant-density fluid 

with a free surface into a pair of equations in terms of the free surface elevation 
h(t, x, y) and the velocity along a horizontal stream bed W ( t ,  x, y). These equations 
are convenient for a perturbation scheme to be introduced in fj 3 to study a head-on 
collision between two solitary waves which are small in amplitude (a/h, < I ) ,  and 
long in wavelength (h/h, 9 1) .  Here a is the measure of amplitude, h the wave- 
length, and h, the undisturbed depth of the fluid. The amplitude and the wavelength 
parameters are related by Ursell’s ordering for theory of shallow water, i.e. ah2 M hi. 
We have carried out the calculations to the third order of approximation. 

In the first-order approximation, we have two independently moving solitary 
waves US([ )  and bS(7). S (x )  = sech2 ax, a progressive wave of permanent type which 
satisfies the Korteweg-de Vries equation. The variables [ and 7 denote the right- and 
left-going wave-framed co-ordinates respectively. The constants a and b specify the 
heights of the waves. In the second-order approximation, we find that the wave field 
is modified by (1)  quadratic terms in S, (2) change of wave speeds and (3)  addition 
of phase functions 19,(7) and r),(C) to 6 and 7 respectively. For two waves at  large 
separation, i.e. before or after collision, the first two corrections above reduce to 
Laitone’s (1960)  second-order calculation of a single solitary wave. On the other hand, 
we can also use the result in (1) to calculate the maximum run-up amplitude during 
the collision. Our result checks with an earlier calculation of Byatt-Smith (1971). 
Since, up to this order of accuracy, the phase function 0 (or r)) is a function of 7 (or 5) 
alone, and differs by a constant value through a collision, this value represents a phase 
shift for a right- (or left-) going solitary wave. This result agrees with that of Oikawa & 
Yajima (1973) .  In the .third-order approximation, we obtain, as before, those three 
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FIGURE 1. Maximum run-up 5 (f = 1, g = 1) ws. wave amplitude Ah/h, = E L :  1, first order; 2, 
second order; 3, third order. a, Maxworthy’s (1976) wave-wave interaction; 0, end-wall 
reflexion ; x , Chan & Street (1970) numerical results; , experimental results. 

corrections to the wave field. The first correction is a polynomial of third degree in S. 
This polynomial in S and the wave speed correction reduce as the separation between 
waves increases, to the known result of Chappelear (1962), Grimshaw (1971) and 
Fenton (1972) pertaining to a single solitary wave with third-order accuracy. How- 
ever, the phase functions obtained become functions both of < and 7. This gives 
different values of phase shifts a t  different points in a wave. Unlike the uniform phase 
shift in the second-order approximation which preserves the wave form, here these 
variable phase shifts cause a distortion of the wave form in addition to a simple 
translation. Since this distorted wave field does not satisfy the equation for waves 
which are propagated without a change in shape and speed, we are forced to investi- 
gate, in 9 5 ,  the slow time evolution of this distorted wave forms. We find that the waves 
eventually transform back to their original forms with shedding of secondary wave- 
lets. These secondary waves propagate with diminishing amplitude in the direction 
opposite to  that of the main waves. Thus we can still speak of preservation of wave 
form up to  the third order of accuracy, with the understanding that there exists 
uniform phase shifts as well as shedding of secondary waves. We stop our calculation 
a t  the third order. However we feel, after working long with the perturbation scheme 
used here, that  the higher-order results will be essentially of similar nature. There 
are two imprints of a collision between two solitary waves: uniform phase shifts and 
shedding of secondary waves. We have also calculated the maximum run-up amplitude 
up to the third order of accuracy for two colliding solitary waves. The result agrees 
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very closely with the numerical and experimental results of Chan & Street (1970). 
It also checks with Maxworthy's (1976) experiment for a solitary wave reflected from 
a wall (see figure 1) .  

Head-on collisions between two solitary waves using different perturbation methods 
have been studied by various authors obtaining results up to second-order accuracy. 
Miles (1977) calls this kind of collision weak interaction in contrast to those intrinsic- 
ally nonlinear overtaking interactions. We note that the latter problem was brilliantly 
solved by Gardner et al. (1967) using the Korteweg-de Vries equation. For a brief 
historical account on weak interactions, we refer the reader to the work of Miles (1977). 

2. Basic Equations 
We take the velocity field of our flow problem to be described by a potential 

# ( t , x ,  y , z ) ,  satisfying the Laplace equation. The free surface, where the pressure 
vanishes, is specified by an unknown function z = h(t ,  x ,  y ) .  The fluid is supported by 
a horizontal plane at z = 0, where we set the normal velocity a$/& = 0. It is easy to 
show in this case that the potential g5 can be expressed as a Taylor series at  z = 0. 
Using V2# = 0 for z > 0 and a#/& = 0 at z = 0, we obtain 

co -2n. 

where 
. a  . a  

@( t , x , y )  = #(t,x,y,z = O ) ,  v = z-++3- ax ay, 

representing a gradient operator in the x, y plane. We can now express the kinematic 
condition a t  the free surface as 

ahlat + v# . v h  = a+/az, 

w / a t  + gh + +A+: + 4; + $3 = C( t )  

and the Bernoulli theorem also applied at the free surface as 

(see Whitham 1974, ch. 13). 
In  terms of 0 these become 

a 0  
at - + gh + +(V@)2 

where the asterisk stands for the vector inner product for even m and the usual arith- 
metic multiplication for odd m, and 

the binomial coefficients. We shall consider waves in a channel. We therefore drop the 
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y dependence in h and a. By taking the x derivative of ( 5 ) ,  we obtain in place of (4) 
and (5) the following two equations: 

where w = a@,/ax represents the velocity a t  the bottom of the channel. 
Both of the above equations are in the conservative form. It is interesting to point 

out that two more conservation laws can be derived from (6) and (7). They represent 
conservation of horizontal momentum and total energy, i.e. 

; ( j o h u d z )  +; [ IOh (uBf;) dz] = 0, 

f [:gh2+;joh (u2+.z)dz]  +;/ohdzu [ & ( u 2 + v z ) + - + g z  " I  P = 0 ,  (9) 

where 

and u = q5z and v = 

use (6) and (7) only. 
are both expressed in w by ( 1 ) .  We shall however in this paper 

3. Perturbation solution for two solitary waves colliding head-on 
Consider two solitary waves, far apart, of small but finite amplitude and heading 

towards each other. The time evolution of their interaction, and the final state after 
their collision will be our main concern. 

We introduce the following co-ordinates transformations (wave frames) 

to = d k ( X  - c, t ) ,  

7 0  = sqx+C,t), 

(10)  

where 0 < 6 < 1 ,  e is a dimensionless parameter representing the order of magnitude 
of the wave amplitude. The scaling of the horizontal wavelength in accordance with 
Ursell's relationship is taken as €4, leaving k and 1 as the wavenumbers of order unity 
for the right- and left-going waves respectively. The right- and left-going wave speeds 
C,, C, are to be related to the amplitudes of the waves. In  the limit of infinitesimal 
amplitude, they take thevalue of linear wave speed (gho)l. Anticipatingthat adifficulty 
might show up in our perturbation method, we introduce the following transformations 
of wave-framed co-ordinates with phase functions? 

t This is essentially the method of strained co-ordinates first introduced by Poincar6 (1892) 
for ordinary differential equations and later generalized to hyperbolic partial differential equa- 
tions by Lighthill (1949) and Lin (1954). For a detailed discussion we refer the reader to Van 
Dyke (1964). 
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60 = t - ske(t-9 7), 

70 = 9 - e W 6 ,  7L 
( 1 1 )  

where 6([ ,7)  and $(6,7) are to be determined in the process of our perturbational 
solution of ( 6 )  and (7).  These functions, introduced for the purpose of making 
asymptotic approximations, allow us to calculate phase changes due to collision. 

Using (10) and (1 1) we obtain the transformation between derivatives as 

where 

Setting h = ho( 1 + 6))  we rewrite ( 6 )  and (7)  into 

where C = (gho)* is the linear wave speed, and 

W2 
p* = f (C - C,,L) (w & CC) + y f CCW 

It is convenient to make the following change of dependent variables 

w + C< = 2sCa, w - Cc = - 2sCP, (16) 

which give us w = ~ ~ ( a - p )  and 6 = E(a+P). Together with ( 1 2 )  and (13) we can now 
represent (14) as 

A similar equation for /3 is obtained by replacing 01 by 8, 6 by 7, k by 1, F+ by F- and 
6 by $. We need hereafter consider (1 7) only. We now express the new variables in the 

FLY 98 
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Substituting ( 1  8) into (17) ,  we obtain a lengthy expression in power series of E (see 
appendix). The coefficients of e, €2, €3 and part of €4 will, however, be presented in 
sequel as follows. 

(i) Coeficients of e 
The equations are simply 

aa o =  0, _ -  aPo - 0. 
a7 a t  

Their solutions are 
010 = a f ( 0  Po = b9(7) ,  ( 1 9 )  

where the constants a, b appearing ( 1 9 )  as well as in (18) are introduced to allow US 

to take f ( 0 )  = g(0) = 1; f and g are arbitrary functions to be determined next. 

(ii) Coeficients of e2 

The equation for a1 takes the form 

-2Rla2kf '  +3a2kff"-b21gg'-ablfg' 

( 2 0 )  hi - abk f ' g  + (ak3f" + 2bkg") = 0. 

The terms appearing in (20) can be grouped into three kinds: 
(a )  Secular terms: Those which are independent of 7. There are three of them in 

( 2 0 )  : ka( - 2R1a  f '  + 3a f f '  + +hi k2 f "). Upon integrating these with respect to 7, we 
obtain secular behaviour, i.e. a contribution which becomes unbounded in time or 
space. We set these secular terms equal to zero and obtain, after letting 

R, = 4, hi k2 = 3a, ( 2 1 )  

f"+3ff'-f' = 0, or f =  AS(<) = sech2(hc). ( 2 2 )  

L,  = 4, h$12 = 3b, g = S(7)  = sech2($7). ( 2 3 )  

an equation which f has to satisfy, viz. 

Similarly we have, from the equation for p, 

( b )  Non-local terms. These are not secular in the present, they will be if left as they 
are. The solution of a1 due to them comes under an integral sign. Physically this 
represents the memory of a collision. I n  ( Z O ) ,  we identify the following two terms to 
be in this category 

4kal- a*, f ' - a b k g f ' .  
87 

W'e again set this equal to zero, and solve for 8, as 

Similarly we have 

(The above result agrees with an earlier work by Oikawa & Yajima 1973.) 
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Before After 
collision collision 

Right-going wave f 7 j - m  T + + c o  
Left-going wave g [++a3 5 j - m  

TABLE 1 

The choice of the lower limits of integrations will be explained in the next paragraph. 
Note that the term abkg f '  as mentioned earlier is non-secular at this order. Had we 

let 19, = 0 we could have solved a1 with a term of the formf' g ( y l )  dy,. Such an al 

will cause a secular solution in a2. 
We now identify the right- and left-going waves as those described by f and g 

respectively. We shall specify the location of these waves before and after collision 
in terms of asymptotic values of 6 and y in table 1 .  We can then calculate from (24) 
and ( 2 5 )  the shifts of the waves after collision. These phase shifts make a uniform 
translation of the 6 and y while leaving the profiles intact. We shall call these simple 
phase shifts. 

s7 

(c )  Local terms. The remaining terms in (20) can be integrated to  give 

(26) 
ab b2 

%(6,17) = Qb2g2+$g-p+a24(6 ) ,  

P l ( L  7)  = f a Y +  ,fs - zf+ b2G,(T), 

similarly 

(27) 
ab a2 

where Fl(6) and G,(y) are two arbitrary functions to be determined from the con- 
sideration of the secular terms in the next order of approximation. 

(iii) Coeficients of e3 

The number of terms in this case is already rather formidable : we shall list them sepa- 
rately in the different groups only. 
(a) Secular terms: Setting these equal to zero, we have 

Fi+(3f-i)Fl = (2R2-%)f+#  f 2 + $ f 3 .  (28) 

The first term on the right-hand side of (28) gives a solution of F, as 

(2R2 --%I (f+ 46.f 'A 
which is unbounded as 6 -+ f co, i.e. the series solution is not asymptotic. We thus 
require the coefficient of this term to vanish, i.e. 

R 2 -&E. - 4 0  (29) 

This gives a second-order correction for the wave speed. 
The remaining equation can be readily solved and we have 

F1 = - 8  f2+f .  

We have now the complete solution for uI and pl: 
(30) 

17-2 
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a,(<, 7) = Q( 7b2g2 - a 2 f 2 )  - g(b2g - 2a2 f )  + - f g, (31) 
ab 
4 

( 3 2 )  
ab pl([, 7) = &(7a2ff"  - b2g2) -*(a"- 2b2g) + Tfg. 

To the result of ( 3 0 )  we can also add one of the bounded homogeneous solutions of 
(28), which is the first derivative off. However, as we go to higher order, it is seen that 
such an addition only amounts to  a uniform shift of the origin of g which represents 
a simple phase shift defined above. We will henceforth drop it entirely. 

( b )  Non-local terms. These terms will give the solution of 8, and 4, as 

Each of the second terms above is of similar nature to the first-order phase shift 
formulae (24) and (25). They give simple phase shifts. Note however that the first 
term in (33) depends on < as q + +a. Since 0, enters into the argument < of the 
function f, we see that the wave profile of the right-going solitary wave differs from 
the one before collision. It tilts backward to the direction of propagation of the wave. 
(See figure 2 and the discussion in (ii) below.) Similar behaviour appears in the left- 
going wave because of the first term in (34). 

I n  5 5 we will study the time evolution of these unsymmetrical waves and show that 
its unsymmetrical part, acquired during collision, will separate and propagate away 
from the symmetric waves of permanent type which are identical to the waves before 
collision. 

( c )  Local terms. After integrating the local terms, we obtain 

a2 = &b3g3 +- 2ab2fg2 - &a2b f 2g - gab2fg + $a2b f g + Q3b3g2 - L b 3  s+a3F2( t ) .  (35) 

A similar expression is obtained for p,, viz. 

p2 = &a3f3 + 2a2b f 2g - t a b " f 2  - ga2b f g + tab2fg + s a 3 f  -&a3f+ b3G2(7). (36) 

The arbitrary functions to  integration F2([ )  and Q,(r) like its counterpart in the 
previous order of approximation must be determined from the secularity-free condi- 
tion in the next order of approximation. 

(iv) Coeficients of c4 

We shall focus only on the secular terms in this order. Setting them equal to zero, 
we obtain an equation for F, similar to (28) as follows 
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The above equation is solved by 

R, = & and F2(f[) = &f3--+$'#++$f. 

Similarly 
L - - 112 5 5  and G2(7) = ?9,g3-217 2 + Q  

l0Og 4 0 9  

for the left-going wave. This completes our result for ct2 and p2 as follows 

a2 = &b3g3 + 2ab2fg2 - aa2b f 2g - gabzf g + &2b f g + $ib3g2 

- @3g + $?&3f - $&3f 2 + %a3f 3, 

and 
p2 = &a3f + 2a2b f g2 - )ab2f g2 - ga2b f g + &b2f g + %u3f 

51 7 

4. Summary of results of section 3 
We have obtained, in § 3, the following results for the velocity a t  the bottom, w, 

the perturbed free surface elevation 6, the wave speeds C,,, CL, and the phase functions 

6, $ 1  

w(f, g )  = eC{af-  bg + e[ - u2f2 + b2g2 + g(a2f- b2g)]  

+ e2[;(u3f - b3g3) -+$(a3f - b3g2) + g(u3f - b3g) 

+ #(a2b f g - ab2fg) - i(a2b f 2g - ab2fg2)]} (42) 
and 

C(f, g )  = c{af + bg + [$(a2f2 + b2g2) + iab  f g + &(a2f + b2g)]  

+ e2[4&'-(a3f3 + b3g3) -&,(a3f2 - b3g2) 

+%(ab2fg2+a2bf2g) -$(a2bfg+ab2fg)+$(a3f+ b3g)]}  > (43) 

(44) _ -  c~ - 1 +'a + ge2a2 + jAe3a3, 
C 2 

where f = sech2 95, and g = sech2 87 with f [  and 7 as defined by (10) and ( 1  1) .  
To compare these results with the earlier works on one solitary wave of Laitone, 

Chappelear, Grimshaw and Fenton, we note that e as used here is equivalent to 
(L,  - L3) of Chappelear but different from a non-dimensional wave-amplitude para- 
meter used by Laitone, Grimshaw and Fenton; the latter is defined as the ratio of 
maximum wave height, amax, to the undisturbed depth (i.e. amax/ho). They expressed 
the wavenumber and wave speed in powers of this parameter. On the other hand we, 
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in this paper, have fixed the wavenumber parameter as €4 and expanded the other 
quantities in terms of e. From (43), we aee that 

and 

Defining eR = c ( 1 , O )  and eL = c(0, l ) ,  each of which is the amplitude parameters 
used by Laitone, Grimshaw and Fenton, we have after inverting the above relation- 
ship 

The term list of (53) and (54) serves to define 0 and Y. 

experimental results of Chan & Street, and Maxworthy. 
The folIowing quantities are presented for convenience of comparison with the 

(i) Phase changes : 

' --f O }  before collision; 
t + + C o ,  Y+O 
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after collision; 
r++co, O = h  

t 
(+-a, \ r = - h  ( 2 3)*( 1 +%-:eL] - 9h, r!) eLg 

A@ = h, ($)* (1 + 2 - y-eR) + 9h, r$)* en f ,  

AY= - h , r f ) a ( l + ~ - ~ & % L ) - - g h  (") t E L g .  

8 O 3  

(55)  

The first term in the right-hand side of (55) or the first term in the right-hand side of 
(56) represents a simple phase shift (a uniform translation without change of wave 
profile). This agrees, in the first order, with that of Oikawa & Yajima. 

(ii) Distortion of wave projile. The second term in the right-hand side of (55) and 
(56 )  is a function of ( or 17 respectively, i.e. different phase shift at  different points in 
the wave. This causes a distortion in the wave profile. For waves of large separation, the 
localized interaction terms (which are products off and g )  in (50) vanish. Following 
the right-going wave we then have, after setting g = 0, 

5 = €R[ f+  i E R ( f 2  -f + &(wf3 -wf2 + #f )I, (57 )  

with f = sech2 [ho(?)* ( I  -#€R+$&€$) ( X - C R t + @ ) ,  (58) 

where the values of O before and after collision are given in (i). In  figure 2 we plot the 
perturbed free surface elevation before and after collision according to (57 )  and (58). 
Before a collision, O = 0, the profile is symmetric but thinner than the first-order 
approximation given by (58). After the collision, the wave becomes unsymmetrical 
and tilts backward with respect to the direction of its propagation. We have also 
plotted the difference between the unsymmetric and the symmetric profile accurate 
to  O ( 8 )  (curve 3). The propagation of these tilted waves will be discussed in the next 
section. 

I n  addition to the tilting discussed above, a second hump will appear in the right 
branch of the wave profile for values of eR > (48)-f M 0.3799. However for such an 
eR the higher-order terms which are neglected in 0-  become comparable to those 
terms retained. The significance of this hump is thus not clear and we shall say no 
more about it. 

(iii) Maximum (run-up) amplitude during collision. For two head-on colliding soli- 
tary waves with their maximum heights before collision defined as eR and eL, the run- 
up a t  a point ((, 1) is defined by the value of the perturbed free surface elevation of 
(50). It is easy to see that the maximum run-up exists a t  the point ((, 7) where f = 1, 
g = 1 and hence 

(59 a )  maximum run-up = eR + eL + ' R  - ' L  + +sREL(cR + eL).  
2 

For two identical solitary waves eR = E~ and 

(59b)  
G2 maximum run-up = 2.sR + - + $4. 
2 
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-0.17 1 
FIQURE 2. Wave profile < / E L  vs. 6 for E L  = 0.2.  1 ,  -, before collision; 2, - - -, 

after collision; 3, . . . . . . , v,, = 9 ~ ;  8s’; 4 ,  - . . -, wavelet at birth. 

I n  figure 1 we plot the maximum run-up of (59b), for the first-, second- (Byatt-Smith), 
and third-order approximations, respectively. The existing numerical (Chan & 
Street 1970), as well as the experimental, results (Chan & Street 1970; Maxworthy 
1976) are also presented (in the plot). It is seen that our third-order result is in com- 
plete agreement with the numerical values of Chan & Street for eR < 0.5. The experi- 
mental data has a sizable spread. Even then, the third-order result seems to  represent 
them best if one excludes those data of Maxworthy which represent wave-wave 
interaction experiments. 

5. Time evolution of the unsymmetrical waves 
It is seen from the results of the previous section that the after-effect of a collision 

on a solitary wave is manifested only by the phase funct,ions 0 and q5. As the collision 
process comes to  an end designated by 7 + + 00 and 5 --f - co for the right- and left- 
going wave, respectively, we see that, for the right-going wave say, all the terms 
associated with g ( 7 )  vanish, except those appearing in the phase function where g is 
under an integral sign. After dropping all terms which are products off and 9,  we are 
left with a solitary wave propagating with a constant speed. This wave, however, is 
not a solution to the equation for a wave propagating without change of speed and 
shape. I n  this section we consider the slow time evolution of this unsymmetrical wave. 
We first derive the appropriate governing equation, and then solve this with the wave 
profile emerging from the collision as initial data. 

Since the 5 dependence of 0 first occurs in the third order of E ,  we take that a slow 
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time dependence does not come in until that order of approximation. We assume, 
following the right-going wave, that 

(60) 

(61) 

where to = d k ( x  - C,,t), T in c3 and W ;  allows the slow time evolution of the wave in 
a moving frame fixed in the right-going wave. We have also assumed that the left- 
going wave is far away and exerts no more effect on the right-going wave. We define 
the slow time variable by 

y eS($) + e2<2(&) + e3Q(60, 7 )  + . . . j  

w = e C , , [ ~ ( ~ o , ) + e W ; 1 ( 5 0 ) + e 2 W i ( t , , ~ ) +  ... I, 

7 = e%kC,t. (62) 

Substituting (62),  (61),  and (60) into the basic equations (6) and ( 7 ) )  we obtain equa- 
tions for S in the first-order approximation, and c2, Wk for the order in € 2 .  The solutions 
of these equations are 

1. R 1 - - 1 2 ,  

R 2 -19, - 4 0  

S = sech2i(,, 

W ; = - S 2 + 8 ,  5 2 - -  - p + + s . J  
These are equivalent to the solutions obtained by Laitone. 

To the third order of approximation, we have, in terms of W;,  

%+ ( 3 8 -  1 )  W ; + 2  “ Z 3 d 5  - ( 2 R , - f $ ) S - y S 2 +  14S3-9S4. (64) w 1 aT’  O -  

We decompose Wi(co, T )  above into a stationary solution plus a transient, i.e. 

WiGO3 7 )  = % ( t o )  + VG-0, 7). (65) 

These functions then satisfy 

and 

The solutions to (66) are 

W 3 - 5  - BS3 - 9 8 2  + QS, R, = ;+z, (68) 

which is equivalent to  the third-order solution of Grimshaw (1971). 
We now consider the time evolution of (67) with the initial data of the difference 

between the wave field of the right-going wave immediately after collision and that 
of W3(t0) of (68), i.e. curve 3 in figure 2. It can be shown that, for a n y p  and k, 

V,(t,, 7 )  = F ( t o ,  k )  e-3ipr+ik50, 

is a solution of (67) provided that we take 

and k 3 + k + p  = 0. 
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This form of solution is first suggested by Jeffrey & Kakutani (1970). Since F(to ,  kl 
is bounded for all to, to have a bounded solution %(to, 7 )  in to, we must take a real k, 
which in turn requires a real p. Therefore the general solution for V in (67) can be 
represented as an integral over all real k, i.e. 

V(E0, 7 )  = 1 a dkA(k)  F(to,  k)e-Jip'+i@o, 
- m  

where A(k)  is determined by the initial data V(to,  7 = 0 ) ,  i.e. 

v(t0;,, 0) = 1 d k A ( k )  p(t0,  k) eieo. 
-a 

Substituting F( to ,  k) of (70) into the above equation, we find that 

+ ( 2 S - l ) - + K  ] 1 dkA(k)eiksO. (72) 
at0 --OD 

The general solution of (72) can be expressed as repeated integrals, i.e. 

However, for V ( t 0 ,  0 )  = pS'(tO) #'(to), which is what we have as initial data up to O(e3) 
for the collision of two solitary waves, it is easily verified that 

Sm dkA,(k)eikto = y[4+S(t0)]. 9 
- m  

(73) 

The value of y is determined by ( 5 3 )  and ( 5 5 )  to be 9&& By Fourier integral theorem, 
we obtain 

A,(k) = $ [48(k) + S"(k)], (74) 

where 6(k) is the Dirac 8-function and 

Since S ( t )  vanishes exponentially as 5 -+ f- co we see that S"(k) is an analytic function 
of k inside a strip containing the real axis. Substituting the function A , ( k )  back into 
(71), we then obtain the solution of (67) corresponding to an initial data ySS' as 

The asymptotic behaviour of the integral in (76) is given by 

where 3k; = - (2t0/7 + 1) .  As 7 + 00, this represents a group of waves trailing behind 
its mother solitary wave. The amplitude of the wave group diminishes in time owing 
to dispersion. This wavelet, starting out with a profile of ySS' - QyS' plotted as the 
curve 4 in figure 2, tends to zero asymptotically as 7 -+ co owing to dispersion. 
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The first term in (76) is independent of r. We note that S' is a complementary solution 
of (66).  This solution represents a uniform phase shift, as we have mentioned in the 
paragraph immediately after (32).  

To calculate the total (uniform) phase shift of the right-going wave up to  O ( d ) ,  
we replace the last term in (55) by 4cR which is the phase shift due to the first term in 
(76), i.e. 

A e  = ho - ( l+g€,+&).  (";.)" 
A similar formula for the left-going wave is 

I n  conclusion, we state three main results from our calculations in relation to the 
existing experiments: 

( 1 )  The maximum amplitude during the collision is given by the formula (59a) .  
This is plotted in figure 1 together with the experimental results of Chan & Street 
and Maxworthy. The third-order result seems to  agree perfectly with the numerical 
calculation of Chan & Street. They also agree very well with the reflexion experiments 
of both Chan & Street (1970) and Maxworthy (1976). They are consistently lower than 
the wave-wave experiment of Maxworthy. 

(2) The total phase shifts are given by (78) and (79). These represent a retardation 
of the waves during their collision. The €3 correction terms make the calculated phase 
shift a little closer to the value obtained by Maxworthy's experiment as shown in 
figure 3. However, the theory does not seem able to account for the experimental 
result which measured amplitude-independent phase shifts. 

(3)  Each solitary wave sheds a secondary wave. For the right-going wave, the 
profile of the secondary wave a t  time of shedding is given by the curve 4 in figure 2 
(accurate up to the order of €3). These secondary waves propagate in the opposite 
direction of their parent waves. Their amplitudes decrease in time owing to dispersion. 
Maxworthy (1976) indicates appearance of the secondary wave in his reflexion experi- 
ment. A quantitative measurement will be of great interest for comparison. 
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his appreciation for all the help and support of H.R.H. Prince Salman Ben Abdul Aziz 
A1 Saud. 

Appendix 
Substituting (18) into (1  7)) we obtain a power series in c. Here we recast each order 

of e alone: 



524 

1.75 

1.50 

1.25 

C .  H .  Su and R. 2M. Mirie 

- 

- 

- 

0'50 t 

A 0 0 

A 

I 
0 0.07 0.14 0.21 0.29 0.36 0.43 0.50 0.57 

E L  

FIGURE 3. Magnitude of twice phase shift (2AO/h,) vus. wave amplitude Ah/& = EL.  -, second 
order; ---, Oikawa & Yajima (1973) and implicit result from Byatt-Smith (1971). A, Max- 
worthy's (1976) wave-wave interaction ; 0, end-wall reflexion. 

The equation for PI is obtained from (A 2)  by replacing a, by P,, a. by Po, 1 by k, 8, by 
$0,7 by E ,  a by b, and R, by L,. 

- ( a 0  + P o )  GT 

1 
(9aopo + y/3i - yapo  - ZhB,)] 
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from (A 2). The equation for p2 can be obtained from (A 3) in a similar fashion as 

aa a aa0 

ar ar 86 
O(e4) = 0: 4 1 2 + l - [  ...I+ 4 k l - [  ...I 

+ (3a0 - a)  Fg - (2R3 - $3) a3a0 

+ima 3 9 3  2 2 - ~ a ~ + P U &  8 4  01 = 0, (A 4) 

where F: = a2Fl, G: = PG,, G,* = b3G, and F,* = a3F2; F, and F, are arbitrary func- 
tions of integration of (A 2) and (A 3) for a, and a2; G, and G, are the corresponding 
arbitrary functions of integration for p1 and p2. The symbols [. . .] in ( A  4 )  represent 
all the non-secular terms in the (e4) order. 
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